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1. Introduction

Taking a higher dimensional theory as a starting point, more than one path can lead to

a lower dimensional theory. The conventional and most physical connection is obtained

by Kaluza-Klein reduction: the starting point is chosen from a specific class of solutions

(vacua) of the higher dimensional theory (essentially solutions that factorize between the

dimensions one wants to keep and those one would like to discard). The lower dimensional

theory is obtained by expansion around one such solution and describes light fluctuations

around it. A different requirement one can impose on the lower dimensional theory, which

sometimes goes under the name of non-linear reduction, is that its solutions lift to solutions

of the higher dimensional theory. The reduction of 11d SUGRA on topological S7 to N = 8

SUGRA in 4d [1] is a prominent example of such a relation between a higher and lower

dimensional theory. Note that it is not guaranteed that such an ansatz captures all light

degrees of freedom around each of the incorporated higher dimensional solutions.

Where is the familiar Calabi-Yau reduction of type II theories [2, 3] situated with

regard to these two possibilities? The reduction can be performed by choosing a Ricci flat

metric g0 on the Calabi-Yau X, and expanding the fields in terms of g0-harmonic forms

ωi. We will refer to this in the following as a base point dependent reduction, since we

are expanding around a solution g0, the hallmark of a Kaluza-Klein reduction. However,

we generically have a continuous family of solutions g(t), and we can free our ansatz from
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the base point dependence on g0 by expanding in g(t)-harmonics ωi(t) instead. The t are

metric moduli, and one might hence expect the reduction of the metric sector of the theory

to be significantly modified by this step ωi → ωi(t). This does not happen, as we will

review below, as the 4d theory ends up depending only on the cohomology classes of the

forms ωi(t) [4 – 6], which of course do not vary with t.

Mainly due to this latter fact, the reduction can be performed without having an

explicit expression for the expansion forms (a lucky circumstance, since no Ricci flat metrics

on compact Calabi-Yau manifolds are explicitly known, let alone explicit expressions for

harmonic forms). The 4d theory is expressed in terms of some topological and holomorphic

data of the Calabi-Yau (the triple intersection number of the 2nd cohomology and the

period matrices of the complex structure). This data is precisely what is needed to specify

an (ungauged) N = 2 supergravity action in 4d, and organizes itself appropriately upon

performing the reduction.

Above, the requirement we imposed on a non-linear reduction was that the solutions of

the lower dimensional theory lift to solutions of the higher dimensional theory. How does the

Calabi-Yau reduction fare on this account? Since the ungauged 4 dimensional N = 2 action

does not exhibit a potential term, all constant values for the scalar fields are a solution to the

4d equation of motion, and by construction lift to solutions of the higher dimensional theory.

While no proof of this lifting property for arbitrary solutions exists to our knowledge, it

does hold for certain other prominent solutions such as N = 2 black holes [7].

Flux compactifications establish a connection between string theory and gauged N = 2

supergravity. Indeed, as first shown in [8], nonvanishing expectation values of the internal

fluxes are described in the 4d effective theory by the scalars in the hypermultiplets picking

up charges under the gauge fields in the vector multiplets. The fluxes contribute to the

potential of the 10d theory, and this energy is reproduced correctly by the potential term

in gauged supergravity. The reduction in the presence of fluxes is still performed on a

Calabi-Yau manifold [9 – 13], and the resulting theory has the same spectrum as its flux-less

relative. In particular, it is based on expanding fields in the harmonic forms on the internal

Calabi-Yau. The justification for this procedure is still not established (but see [14, 15]).

Note that a Kaluza-Klein reduction would take the backreacted geometry as a starting

point and would yield a 4d effective theory, generically non-supersymmetric, valid around

a given VEV of the 4d scalar fields. The hope is that the procedure described above yields

an effective theory encompassing multiple solutions of the 10d theory at different minima

of its potential.1

Ignoring for the moment the various conceptual challenges posed by effective N = 2

descriptions of flux compactifications, one can consider gauged N = 2 theories in light of

the swampland program [16]: having obtained an N = 2 theory from compactification,

can all of its possible gaugings be realized within string theory? Flux compactifications do

not exhaust all possible gauging. Recently, various authors [17 – 21] have suggested that

gauged N = 2 supergravity can also be obtained by compactifying on SU(3) structure

1In fact, merely turning on fluxes can never result in a potential with minima at finite radius, as the

contribution of fluxes to the potential energy is minimized when the fluxes are ‘diluted’ in the decompacti-

fication limit. See [13] for one possibility to avoid this runaway behavior in the effective N = 2 context.
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manifolds. These manifolds admit almost complex and symplectic structures and hence

possess invariant forms J and Ω (and nowhere vanishing spinors) just as Calabi-Yau man-

ifolds do, but these structures are no longer required to be integrable. When considered

as deformations of Calabi-Yau geometries (see e.g. [22]), these ansätze supply the miss-

ing gaugings [18]. Once these reductions are better understood, however, they should be

able to stand on their own feet (the swampland question then of course would arise in the

opposite direction, possibly indicating that these manifolds can always be understood as

deformations of Calabi-Yau manifolds).

The reduction proceeds by mimicking the ansatz for Calabi-Yau reductions. In the

latter, the expansion forms ωi(t) are specified geometrically (as harmonic forms) and their

relation to the moduli space of Calabi-Yau metrics is known. That these forms satisfy

all the properties needed for the reduction to go through and the 4d action to assemble

itself into N = 2 supergravity hence is required by consistency. By contrast, the space

of metrics that should be considered in the more general SU(3) structure case is not well

understood. The procedure in the literature, which we shall follow and review in much

greater detail below, has therefore been the following: to allow for manifolds with merely

SU(3) structure rather than SU(3) holonomy, we must allow for some expansion forms to

be non-closed. We then attempt to impose the minimal number of requirements on such

a system of forms for the resulting four-dimensional theory to have the structure required

by N = 2 supersymmetry.

The starting point for the analysis in this note is the above observation that in the case

of CY reductions, the step from base dependent to base independent reduction, ωi → ωi(t),

is unproblematic due to the reduction depending only on the cohomology classes of the

forms ωi(t). In the modified setup, such considerations do not apply (the expansion forms

are not closed). As explained above, problems are expected to arise in the metric sector, and

we hence expose the reduction of this sector to more scrutiny than has been hitherto done.

We have essentially two results to report: for the base point dependent reduction to go

through, certain differential conditions must be satisfied by the forms, but we demonstrate

that these are equivalent to conditions that have been assumed to hold already. We find

one additional constraint which is new and must be imposed. The step to a base point

independent reduction requires imposing additional constraints, which we discuss. The

constraints appear very restrictive.

Throughout this paper, we present our results in the framework of type IIA.

We begin in section 2 by reviewing and completing the conditions that have appeared

in the literature on the system of forms the reduction is to be based on, and listing the

additional conditions needed for a base point independent reduction. In section 3, we

analyse the reduction of the metric sector of the theory. We derive the conditions for

the base point dependent reduction to go through and see that these follow from the

conditions imposed in section 2. We also demonstrate how the conditions for the base

point independent reduction arise. In section 4, we clarify the relation of our ansatz to

one based on expanding in eigenforms of the Laplacian. We construct a system of forms

satisfying the näıve conditions required for the reduction to go through, and discuss its

shortcomings.
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2. Conditions on the expansion forms

The starting point of the analysis is a reduction manifold X which has SU(3) structure,

but is not necessarily Calabi-Yau. Such manifolds exhibit a set of SU(3) invariant forms, a

2-form J and a 3-form Ω. As the nomenclature indicates, these will play a similar role in

the reduction as the Kähler form and the holomorphic 3-form do in Calabi-Yau reductions.

In particular, J determines an Sp(6, R) structure, and Ω an SL(3, C) structure. As in

Calabi-Yau reductions, J and Ω are to be expanded in the same set of forms as the RR

gauge potentials and the B-field.

Let us recall that J and Ω are no longer closed, and their failure to be such (i.e. the

failure of the structure group to be the holonomy group) is characterized by components

of the intrinsic torsion, which fit into SU(3) representations,

dJ = −
3

2
Im(W1Ω̄) + W4 ∧ J + W3 ,

dΩ = W1J
2 + W2 ∧ J + W̄5 ∧ Ω . (2.1)

It follows that the expansion forms cannot all be closed, and we must choose what conditions

to impose on their differentials. The smallest deviation from the Calabi-Yau reduction,

while allowing for non-closed J and Ω, is given by the following ansatz.

i) We start with a set of 2-forms ωi.

ii) We need a set of dual 4-forms ω̃i such that
∫

ωi ∧ ω̃j = δi
j . (2.2)

For a Calabi-Yau, these exist by Poincaré duality. Here, we construct them by re-

quiring the matrix

gij =

∫

ωi ∧ ∗ωj ,

to be invertible with inverse gij , and defining

ω̃i = gij ∗ ωj . (2.3)

iii) The 3-forms are to come in pairs αA, βA and should satisfy
∫

αA ∧ βB = δA
B ,

∫

αA ∧ αB =

∫

βA ∧ βB = 0 . (2.4)

In addition, the Hodge duals of this set of 3-forms should be expressible as linear

combinations within the same set,

∗αA = AB
AαB + BABβB ,

∗βA = CABαB − AA
BβB , (2.5)

with constant (i.e. coordinate independent) coefficient matrices A,B,C.
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iv) For the variation of the coefficients of the αA in the expansion

Ω = XAαA − GAβA

to correspond to variations of the SL(3, C) structure, we must require that the forms

αA − ∂AGBβB − κAΩ (2.6)

be of type (2,1) away from the XA = 0 locus. The objects that enter in the definition

of these forms are introduced in section 3.2.

v) The most obvious differential constraints to impose are that the set of 2-, 3-, and

4-forms we expand in are closed under the action of d and d†. This yields [17 – 19]

d†ωi = 0 (2.7)

dωi = mi
AαA + eiAβA (2.8)

dαA = eiAω̃i ; dβA = −mi
Aω̃i (2.9)

dω̃i = 0 . (2.10)

Note that under the assumption of closure under the action of d, d†, this is the most

general set of conditions we can impose (the coefficients in (2.9) follow from (2.2)

and (2.4)). For consistency (d2 = 0), the coefficient matrices must satisfy the follow-

ing set of constraints

mi
AejA − eiAmj

A = 0 . (2.11)

Upon performing the reduction with such an ansatz, the matrices mi
A and eiA de-

scend to charge matrices for the hypermultiplets under the vectors. We hence require

that they have integer entries.

vi) We next want to implement the compatibility of J and Ω,

J ∧ Ω = 0

at the level of the expansion forms. Given the expansion

J = viωi , Ω = XAαA − GAβA , (2.12)

requiring

ωi ∧ αA = ωi ∧ βA = 0 (2.13)

is the simplest way to guarantee this. This in particular implies that the 2-forms ωi

are to be of type (1,1), and the 4-forms ω̃i consequently of type (2,2). At two points in

the reduction, we will see the need to impose (2.13) rather than the weaker condition

following from (2.12), see the paragraph immediately below and section 3.1.

– 5 –
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By imposing the conditions i) through vi) (excluding iv), the need for which will

become apparent in the following section), it has been shown [17, 18, 21] that the reduction

of the terms in the 10d action involving the RR and NSNS gauge potentials yield the

expressions familiar from Calabi-Yau reductions, but with the derivatives acting upon

the hyperscalars elevated to gauge covariant derivatives, with the charges of the scalars

being dictated by the integer entries of the coefficient matrices eiA and mi
A. Furthermore,

additional terms from these sectors not present in conventional Calabi-Yau reductions

assemble themselves, together with the terms stemming from the reduction of R6, to the

potential of N = 2 gauged supergravity dictated by the charges of the hyperscalars. That

the reduction of R6 yields the correct terms has been shown [17, 21] under the assumptions

that the components of the intrinsic torsion in the representations 3 and 3̄ vanish, i.e.

J ∧ dJ = 0 and dΩ(3,1) = 0, hence W4 = W5 = 0.2 These conditions follow from (2.13)

of condition 2. Hence, if we insist on these conditions on the torsion from the outset, as

seems to be required in order to obtain the correct form of the potential, then (2.13) is not

merely the simplest way to guarantee J ∧ Ω = 0, but follows. Condition iv) has not been

discussed in the literature previously.

In the following section, we perform the reduction of the metric sector. We will see

that the conditions listed above are sufficient for the reduction to work if we assume that

the expansion 2- and 3-forms do not vary with the metric moduli (by definition (2.3),

the 4-forms {ω̃i} are moduli dependent even for a fixed choice of 2-forms {ωi}). If we

instead allow such a variation (recall that in the Calabi-Yau case, we expand in harmonic

forms that hence are moduli dependent), we need to impose further conditions on these

variations.

To retain the form of the prepotential in the vector multiplet sector, as expressed in

terms of the forms {ωi}, upon allowing these forms to depend on the moduli, and likewise

to retain the form of the special geometry part of the quaternionic metric, the following

three conditions arise.

*vii) The 2-forms should satisfy the constraint

vi ∂

∂vj
ωi = 0 ,

2When W4 = W5 = 0, the internal Ricci scalar can be written as [25]

R6 =
1

2
(15W1W̄1 − W2xW̄2 − W3xW3) ,

where on forms of any degree, W ∧ ∗W = (W xW )Vol6. Introducing pure spinors Φ+ = exp(−iJ) and

Φ− = Ω, we observe that the structure of R6 is matched by

1

2

`

〈dΦ+, ∗dΦ̄+〉 + 〈dΦ−, ∗dΦ̄−〉
´

,

where we have used the standard definition of the Mukai pairing 〈·, ·〉, see e.g. [19]. This contribution to

the potential would nicely combine with that of the NS flux into

VNS =
1

2

`

(dJ + iH) ∧ ∗(dJ − iH) + dΩ ∧ ∗dΩ̄
´

,

which has the mirror-symmetric structure advocated in [17, 23, 24].
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with the vi metric moduli as defined in (2.12). We will review why this holds in the

Calabi-Yau case in the next section.

*viii) The integral

dijk =

∫

X

ωi ∧ ωj ∧ ωj (2.14)

should be moduli independent. In the Calabi-Yau case, this is guaranteed because

the derivative of the harmonic form ωi with regard to a metric modulus is exact.3

*ix) Analogously, we demand the vanishing of the following integrals,

∫

αA ∧ ∂CαB =

∫

αA ∧ ∂CβB =

∫

βA ∧ ∂CβB = 0 , (2.15)

where the derivatives are taken with regard to metric moduli that will be introduced

in subsection 3.2.1. Again, the vanishing of these integrals is guaranteed in the

Calabi-Yau case by the exactness of the derivatives.

We have labelled these final three conditions with a ∗, as they are derived under the

assumption that we retain the form of the prepotentials after allowing moduli dependence

of the expansion forms. Can this assumption be weakened? It is possible that the correct

reduction requires adding contributions to the prepotentials which depend on derivatives

of the expansion forms and hence vanish in the case that these are constant. Though we

have not been able to come up with such an ansatz, we are not claiming a no-go theorem

in this direction.

Basing the reduction on constant expansion forms is the analogue of picking a base

point in moduli space in the case of Calabi-Yau reductions, and expanding in forms har-

monic with regard to the metric at this point. This vantage point makes do with the

requirements i) to vi). Such an ansatz however does not seem in keeping with the under-

lying philosophy of the reduction, that it be valid over all of moduli space. Removing the

base point dependence necessitates imposing additional conditions on the forms. The most

natural choice appears to be conditions ∗vii) to ∗ix).

3. Reduction of the metric sector

3.1 Special geometry

Vector fields arise from the expansion of the RR 3-form field C3 in the set of 2-forms

{ωi}. By N = 2 supersymmetry, these vectors should be accompanied by complex scalars,

parametrizing a scalar manifold with a special Kähler metric. In analogy to the Calabi-Yau

case, these scalars should arise in our compactification scheme from the variation of the

Sp(6, R) structure.

3Note that we are not requiring dijk to be a topological invariant. E.g., it can depend on geometric data

specifying the subset of SU(3) structures encompassed by our parametrization.
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Let us briefly review the Calabi-Yau case. We start by specifying a basis {Γi} of

H2(X, Z). Coordinates vi on the space of Kähler classes are then introduced via

vi =

∫

Γi

J ,

for J an arbitrary representative of the Kähler class [J ]. By Yau’s theorem, given a complex

structure on X and the Kähler class specified by the vi, we can find a Ricci flat metric with

associated Kähler form J within this Kähler class. Hence, v not only specifies a Kähler

class but also a Kähler form, which we will denote by J(v). A Kähler form together with

a complex structure on X uniquely determine a metric via

igab̄ = Jab̄ .

To consider variations of this metric with regard to the coordinates vi, we introduce a

basis {[ωi]} of integral cohomology H2(X, Z) dual to the basis {Γi} introduced above, with

the ωi(v) representatives that are harmonic with regard to the metric determined by J(v).

Then,

i
∂gab̄

∂vi
= ωi ab̄ + vj ∂

∂vi
ωj ab̄ . (3.1)

By the Lichnerowicz equation, we know that variations of a Ricci flat metric preserve Ricci

flatness if and only if the associated 2-form

∂gab̄

∂vi
dza ∧ dz̄b̄

is harmonic. Of the forms appearing on the r.h.s. of (3.1), ωi is harmonic by definition.

∂iωj is exact, as [ωi(v)] is constant, hence we can conclude

vj ∂

∂vi
ωj ab̄ = 0 .

At our current understanding of the SU(3) structure case, we must skip several of the steps

above, and take as our starting point an SU(3) invariant 2-form J together with ad hoc

coordinates vi on the correct subspace of Sp(6, R) structures such that J = viωi(v).

Using the SU(3) invariant form Ω to introduce, patchwise, a basis of T ∗X of definite

type, we can then define a hermitian metric on X in terms of J as

igab̄ = Jab̄

and consider its variation with regard to vi,

i
∂gab̄

∂vi
= ωi ab̄ + vj ∂

∂vi
ωj ab̄ .

With this relation, KK reduction of the Ricci scalar R yields the following metric for the

σ-model describing the almost symplectic sector,

VGij(v) ∼ (δi
k + vk ∂

∂ṽi
)|ṽ=v (δj

l + vl ∂

∂v′j
)|v′=v

∫

X

ωk(ṽ) ∧ ∗ωl(v
′) , (3.2)

– 8 –
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where we have introduced V =
∫

J ∧ J ∧ J . The Hodge star is taken with regard to the

metric gab̄(v). It can be traced back to the contractions required to obtain the Ricci scalar

from the Riemann tensor, as in the Calabi-Yau case [3].

For Calabi-Yau reductions, a crucial ingredient in obtaining special geometry from

the reduction of the symplectic sector is the complexification of the vi by the scalars bi

descending from the expansion of the NSNS B-field, B = biωi + . . ., to ti = bi + ivi. The

kinetic term for these scalars arises from the reduction of
∫

X
H ∧ ∗H, hence has σ-model

metric

GB
ij(v) ∼

1

V

∫

X

ωi(v) ∧ ∗ωj(v) . (3.3)

Clearly, GB must coincide with the metric in (3.2) for this complexification to take place.4

The derivative terms in (3.2) must hence vanish. By considering the diagonal contribution

vk ∂

∂ṽi
|ṽ=v vl ∂

∂v′i
|v′=v

∫

X

ωk(ṽ) ∧ ∗ωl(v
′) = ||vk ∂

∂vi
ωk(v)||2 ,

we recognize that short of miraculous cancellations between various integrals, we must

require vk ∂
∂vi ωk(v) = 0. This is our condition ∗vii), and with it, (3.2) reduces to (3.3), and

we can henceforth drop the B in referring to this metric.

The expression for G can be considerably simplified, revealing the special geometry

underlying it. We begin by reexpressing ∗ωi. Given an almost complex structure on X

with regard to which ωi is taken to be of type (1, 1), we consider a patch and introduce

local complex coordinates zα, inducing a basis of definite type for the cotangent space.

Furthermore, we can choose this basis so that at a point P0, the SU(3) invariant 2-form

J = i
2

∑

dzα ∧ dz̄ᾱ. A purely algebraic calculation now yields [4], at P0,

∗ωi =
1

2
(ωixJ)J ∧ J − ωi ∧ J . (3.4)

This equality extends to the whole patch, as it is formulated intrinsically (without reference

to the point P0). To extend it over all of X, we need J to be a globally defined nowhere

vanishing (1, 1) form which at a given point can be put in the diagonalized form. J of course

enjoys these properties courtesy of the SU(3) structure we take as our starting point.

Next, we want to reexpress the contraction ωixJ . Consider

1

2

∫

X

(ωixJ)J ∧ J ∧ J =

∫

X

∗ωi ∧ J +

∫

X

ωi ∧ J ∧ J

=

∫

X

ωi ∧ ∗J +

∫

X

ωi ∧ J ∧ J

=
3

2

∫

X

ωi ∧ J ∧ J .

4Under our general assumption that the functional form of the prepotential is not modified upon admit-

ting moduli dependence of the expansion forms, we can argue that the complexification ti = bi + ivi must

take place in precisely this form by considering the gauge sector.
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To pull ωixJ out from underneath the integral, we need d(ωxJ) = 0. But this is a conse-

quence of (2.10),

0 = dω̃i

= gijd ∗ ωj

= gijd(
1

2
(ωjxJ)J ∧ J − ωj ∧ J)

=
1

2
gijd(ωjxJ)J ∧ J .

Note that this is the second place where we need (2.13) rather than the weaker condition

that follows merely from requiring compatibility of J and Ω. With this, we obtain the

same expression for the contraction as in the Calabi-Yau case [4],

ωixJ = 3

∫

X
ωi ∧ J ∧ J

∫

X
J ∧ J ∧ J

. (3.5)

By plugging all this back into the expression (3.2) for G, we see that the dependence on

ωi(v) arises in the form

dijk(v) =

∫

X

ωi(v) ∧ ωj(v) ∧ ωk(v) .

To relate the metric G to the Kähler form log K ∼ log
∫

J∧J∧J , we must require that dijk

is independent of v. This is condition ∗viii). Reexpressing the vi in terms of the complex

coordinates ti, we then obtain G as

Gi̄ ∼ ∂i∂̄K .

Special geometry now follows exactly as in the Calabi-Yau case.

3.2 Quaternionic geometry

A set of 4d scalars arises when expanding the RR 3-form C3 in the set of 3-forms {αA, βA}.

In analogy with the Calabi-Yau case, these are to be augmented by scalars stemming

from the variation of the SL(3, C) structure. Together, these scalars are to parametrize a

quaternionic manifold. We consider the metric and the RR scalars in turn.

3.2.1 The metric scalars

Let us first determine the relation between the variation of the SU(3) invariant form Ω and

the metric. To this end, let p be an element of the reduced SU(3) frame bundle, and {ea}

the standard holomorphic basis of C
3. Then

Ω(p(ea), p(eb), p(ec)) = Ωabc

is the invariant tensor. Now consider the infinitesimal deformation Ω̃ = Ω + δΩ, and let p̃

denote an element of the frame bundle defined by Ω̃, with p̃(ea) = p(ea) + δp b
a p(eb). Then

0 = (Ω + δΩ)(p̃(ea), p̃(eb), p̃(ec̄))

= Ωabdδp
d

c̄ + δΩabc̄ .

– 10 –
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Hence,

δp d
c̄ = −

1

2||Ω||2
Ω̄abd(δΩ)abc̄ , (3.6)

with ||Ω||2 := 1
3! Ω̄

abcΩabc and where we have used Ω̄abcΩabd = 1
3δc

dΩ̄
abeΩabe. The metric g̃

defined by the new structure satisfies

0 = g̃(p̃ā, p̃b̄)

= δg(pā, pb̄) + g(pā, pc)δp
c

b̄
+ g(pc, pb̄)δp

c
ā .

We thus arrive at

δgāb̄ = −gācδp
c

b̄
− gcb̄δp

c
ā

=
1

2||Ω||2
(Ω̄cd

ā(δΩ)cdb̄ + Ω̄cd
b̄(δΩ)cdā)

=
1

||Ω||2
Ω̄cd

ā(δΩ)cdb̄ for δΩ primitive . (3.7)

Now assume that we have parametrized the variation of the SL(3, C) structure in

terms of parameters zα. Below, we will use the expansion forms αA, βA to define such a

parametrization. Given such zα, we introduce 3-forms χα of type (2,1) as the (2,1) part of

the following derivatives,

χα :=

[

∂

∂zα
Ω

]

(2,1)

. (3.8)

Note that χα 6= 0 by assumption of zα being a parametrization of SL(3, C) structure: two

complex 3-forms that are each of type (3,0) with regard to the SL(3, C) structure defined

by the respective other 3-form define the same SL(3, C) structure. By the compatibility

condition J ∧ Ω = 0, the χα are primitive. In terms of these definitions, (3.7) becomes

∂

∂zα
gāb̄ =

1

||Ω||2
Ω̄cd

ā(χα)cdb̄ .

Reduction of the Einstein term with this ansatz yields [3]

Gαβ̄ ∼
1

||Ω||2

∫

X

χα ∧ χ̄β̄ (3.9)

for the σ-model metric of the almost complex sector. We would like to obtain this metric,

as in the Calabi-Yau case, from a Kähler form

K ∼ log

∫

X

Ω ∧ Ω̄ .

The key equality for Gαβ̄ ∼ ∂α∂β̄K to hold is the relation

∂

∂zα
Ω = καΩ + χα (3.10)
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with κα constant. By definition of χα, Ω̃α = ∂
∂zα Ω − χα is a (3,0) form. The quotient

κα = Ω̃α

Ω is hence well-defined. For a Calabi-Yau, κα must be a holomorphic function

by the holomorphicity of Ω and the coordinate independence of the parameters zα. As a

holomorphic function on a compact manifold, it must be a constant. In our more general

setup, we derive this requirement from the condition that the matrices A, B, C in (2.5) be

constant. In the next subsection, we will derive expressions for these constants in (3.13)

that depend on κa, and conclude that dκa 6= 0 is not compatible with dA = dB = dC = 0.

Note that up to this point, the expansion of the SU(3) invariant form Ω in the set

{αA, βA}, Ω = XAαA−GAβA, has not entered. We will need it to introduce a parametriza-

tion of SL(3, C) structures, and argue for the metric Gαβ̄ being special Kähler. As a first

step, we want to demonstrate that the GA can be expressed as a function of the XA. To

this end, consider

0 =

∫

Ω ∧ ∂AΩ

=

∫

Ω ∧ (αA + XB∂AαB − ∂AGBβB − GB∂AβB)

= GA − XB∂AGB + XBXC

∫

αB ∧ ∂AαC + GBGC

∫

βB ∧ ∂AβC .

In the Calabi-Yau case, the two integrals in the final line vanish because the derivatives

∂AαC , ∂AβC are exact (varying the complex structure does not change the cohomology

classes [αA(X)], [βA(X)]). In the current setup, we impose the vanishing of these integrals

as condition ∗ix) on the expansion forms. The system of partial differential equations for

determining GA in terms of the XA, with this condition, is linear,

GA = XB∂AGB . (3.11)

Introducing the function G = 1
2GAXA, such that

∂AG = GA ,

we see that (3.11) can be rewritten as

GA = XB∂BGA .

The content of (3.11) is hence that GA are homogenous functions of degree 1. As we have

seen, they can be obtained as partial derivatives of the homogenous function of degree 2

given by G as defined above.

Further, note that the r.h.s. of (3.6) is invariant under rescaling of Ω. We can use this

invariance to eliminate one of the variables, e.g. by setting X0 = 1 away from the X0 = 0

locus (a variation δX0 = δ of Ω is then implemented by the variation δXA = −δ, ∀A 6= 0).

We can now introduce variables zα parametrizing the variation of Ω explicitly via zα = Xα

for α 6= 0. As mentioned above, for these variables to parametrize variations of the SL(3, C)

structure, χα introduced in (3.8) above must be non-zero. For a Calabi-Yau, this follows

because the 1
2b3 = b2,1 + 1 forms ∂AΩ are linearly independent, hence span H3,0 ⊕ H2,1.

– 12 –
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For our more general case, we have imposed this as condition ii). In fact, condition ii) is

slightly stronger, and the need for it will arise in the next section.

Given this, the metric Gαβ̄ in fact proves to be special Kähler, as in the Calabi-Yau

case, with prepotential the function G introduced above.

3.2.2 The RR scalars

In the reduction of the RR-sector, we must evaluate integrals of the form

∫

αA ∧ ∗αB ,

∫

αA ∧ ∗βB ,

∫

βA ∧ ∗βB .

This is where the coefficients AB
A , BAB , CAB introduced in (2.5) come into play. Follow-

ing [27], we can derive expressions for these coefficients by using the two relations

∗Ω = −iΩ̄ , ∗χα = iχ̄α

(we are using conventions in which the scalar product (φ,ψ) =
∫

φ ∧ ∗ψ is sesquilinear).5

This first relation holds since Ω is a (3,0) form, and the second since χα is of type (2,1)

and primitive. These relations of course hold pointwise and do not require integrability of

the almost complex structure. To determine the coefficients, it is convenient to undo the

gauge choice X0 = 1 and introduce the forms

φ̃A =
∂

∂XA
Ω

= αA − ∂AGBβB + XB∂AαB − GB∂AβB .

For A 6= 0, φ̃A − κAΩ is of type (2,1) with the coefficients κA introduced in (3.10), and

we define κ0 to extend this property to all indices A. In the Calabi-Yau case, this (2,1)

form is a sum of harmonic forms (αA and βA), and exact forms (∂AαB and ∂AβB). By the

commutation of the projector Πp,q on forms of definite bidegree (p, q) and the projector on

harmonic forms H, we can drop the exact terms, obtaining φA − κAΩ with

φA = αA − ∂AGB βB ,

while maintaining the bidegree of the form. This proves crucial in deriving the precise

form of the matrices A,B,C needed by N = 2 supersymmetry. This is why, in our more

general setup, we choose to require φA −κAΩ being (2,1) as condition ii) on our expansion

forms. Again by condition ii), this (2,1) form is also primitive. Given this, φA satisfies the

property

∗φA = iφ̄A − 2iκ̄AΩ̄ . (3.12)

5These are the conventions used e.g. in [26]. They are different from those appearing in discussions of

G-structures, where typically one introduces a linear, rather than a conjugate linear, Hodge star operator.

Under the conventions used here, no representation of SU(3) is (anti) self-dual.
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We can plug in the expansion (2.5) and compute the coefficients in terms of κA, obtaining

CAB = −(Im G)−1 AC(δB
C − κCXB − κ̄CX̄B) ,

AB
A = CBC(Re G)CA + i(κAXB − κ̄AX̄B) , (3.13)

BAB = AC
B(Re G)CA − Im GAB − i(κAGB − κ̄AḠB) .

As promised, for these coefficients to be constant, we must require constancy of the κA.

Under this condition,

κA =

∫

φA ∧ Ω̄
∫

Ω ∧ Ω̄

=
Im (GAB)X̄B

XAIm (GAB)X̄B
.

Substituting this relation into the above expressions for the coefficients yields the con-

ventional result [27], and the two set of scalars assemble themselves to parametrize the

quaternionic hypermultiplet scalar manifold.

4. Expanding in eigenforms of the Laplacian

Our approach to this point has been to impose those conditions on our expansion forms

which seem to be required for the reduction of type IIA to yield N = 2 gauged supergravity

— again, we use the non-commital ‘seem to be required’, as our approach, as we have

emphasized throughout, mimics the Calabi-Yau case closely; what lies in wake when we dare

to distance ourselves further from this safe haven remains to be explored. A more ambitious

program would have been to justify the forms to expand in ab initio. Though concrete

proposals in this direction are lacking, one natural thought is that massive eigenforms of

the Laplacian should play a role in the expansion [17, 28]. In the following subsection, we

study the relation between our ansatz in section 2 and an expansion in eigenforms of the

Laplacian. In the subsequent subsection, we study how far a näıve approach to constructing

a system satisfying the conditions of section 2 based on such eigenforms takes us.

4.1 Our conditions and the Laplacian

On a compact manifold, the Laplacian on forms has properties close to those of a self-

adjoint operator on a finite dimensional vector space. In particular (see e.g. [29], theorem

B2),

Theorem. The completion L2Ap(M) of Ap(M) with respect to the L2 norm has an or-

thonormal basis φ1,p, φ2,p, . . . consisting of eigenforms of 4p. One can order the eigenforms

so that the corresponding eigenvalues λk,p satisfy

0 ≤ λ1,p ≤ λ2,p ≤ . . . → ∞ ,

in particular, the multiplicities are finite.
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The conditions we impose in section 2 imply that our system of 2, 3, and 4-forms

is closed under d, d†, and ∗. Together with the above theorem, this implies that our

considerations take place within a finite number of eigenspaces of 42, 43, and 44. We

hence have a finite basis available within which to expand our forms.

4.2 A first attempt at constructing a set of expansion forms

With the observation of the previous subsection, one can imagine setting out to construct

a set of forms with the properties listed in section 2. We will proceed näıvely in this

subsection and obtain a set of forms that satisfy the conditions i) through iii) and v).

One could imagine imposing condition ii) (compatibility), but condition iv) is explicitly

violated, and the reduction hence fails to yield gauged N = 2 supergravity. This subsection

is intended both to clarify some of the considerations in the previous sections in a more

concrete setting, and to demonstrate the necessity of condition iv), which has not appeared

in the literature previously.

We begin with a set of linearly independent 2-forms that are massive eigenforms of

the Laplacian (rather than linear combinations of such) and coclosed ([28] considers the

following setup up to the proper normalization),

42ωi = m2
i ωi , d†ωi = 0 .

With regard to the natural scalar product (φ, χ) =
∫

φ∧∗χ, forms from different eigenspaces

are orthogonal. On degenerate eigenspaces, an orthogonal basis can be introduced. Hence

assume that the 2-forms ωi form an orthogonal set. This restricts us to the metric Gij̄ ∼ δij̄ .

We choose the normalization

||ωi|| =
1

mi
.

We introduce 4-forms according to our definition in section 2. With the normalization

chosen,

ω̃i =
∗ωi

||ωi||2

= m2
i ∗ ωi .

We define a set of 3-forms via

dωi = αi , βi = ∗αi. (4.1)

We refer to a system of 2-, 3-, and 4-forms that satisfy the above relations as a minimal

system (minimality referring to the choice of matrices e,m,A,B,C relating the various

forms and their Hodge duals).

Note that the 3-forms have eigenvalue m2
i with regard to 43. Trivially,

∫

αi ∧ αj =
∫

βi ∧ βj = 0, and due to our choice of normalization of the 2-forms,
∫

αi ∧ βj =

∫

dωi ∧ ∗dωj

=

∫

42ωi ∧ ∗ωj

= δij .
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Finally, our choice of normalization of the 2-forms also guarantees the integrality of the

differential of the 3-forms expanded in our set of 4-forms,

dβi = d ∗ αi

= d ∗ dωi

= m2
i ∗ ωi

= ω̃i .

This näıve construction hence meets the requirements i) through iii) and v) of section 2.

Condition iv), however, is violated. As we will now argue, this is because fixing the ∗ of

the 3-forms is the moral analogue of compactifying on a Calabi-Yau with rigid complex

structure. To see this, consider again

∗Ω = −iΩ̄ .

In section 3, we use this condition to determine the matrices A,B,C. Since these matrices

are fixed in the minimal setup of this section, this condition instead allows us to solve for

Gi, and yields

Gi = iXi ,

such that Ω = Xi(αi − i∗αi). The variation of Ω with regard to Xi now clearly does

not contain a (2, 1) piece, hence does not correspond to a variation of SL(3, C) structure.

Without this condition, the reduction fails to assemble itself into a quaternionic sector.

4.3 The scope of minimality

We witnessed in the previous subsection that the minimal system fails to satisfy the com-

plete set of constraints required to yield the desired reduction. In the form (4.1), the

minimal system is easy to identify. However, all ansätze related to (4.1) via a symplec-

tomorphism are equivalent and will equally fail. In view of this, we consider in this final

subsection what conditions the matrices m, e,A,B,C must satisfy for our system of forms

to not be equivalent to the minimal system.

To transform a given system with

dωi = mijαj + eijβj (4.2)

to a minimal one, we need to find a symplectomorphism

(

α′

β′

)

= M

(

α

β

)

such that

(Nα′)i = mijαj + eijβj ,

β′
i = ∗α′

i , (4.3)
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with N a real invertible matrix. We can then introduce a new set of two forms

ω′
i = (N−1ω)i ,

thus reexpressing (4.2) in minimal form

dω′
i = α′

i , β′
i = ∗α′

i .

When does such an M exist? By (4.3),

M =

(

N−1m N−1e

N−1(mA + eC) N−1(mB − eA)

)

,

yielding the conditions

N−1

(

meT − emT mBmT − eCeT − mAeT − eAmT

−
[

mBmT − eCeT − mAeT − eAmT
]

(mA + eC)(mB − eA)T − transp.

)

(N−1)T

=

(

0 1

−1 0

)

,

where we have written N for N ⊗
(

1 0

0 1

)

for notational simplicity. The first condition

(position (1,1) in the matrix) is just (2.11), required by d2 = 0. The condition

−mBmT + eCeT + mAeT + eAmT = NN T (4.4)

can be used to determine N . A solution exists, since the matrix on the l.h.s. is symmetric,

but for N to be real, the eigenvalues of this matrix must all be positive. Finally, we obtain

the condition that the matrix

(mB − eA)(mA + eC)T (4.5)

be symmetric.

To recapitulate, if the matrices e,m,A,B,C are such that these two conditions are

satisfied, our system of expansion forms (4.2) is equivalent to a minimal system and hence

not suitable as a starting point for the reduction. Note finally that particularly in this

final section, we have been treating the matrices A,B,C as an input. Hopefully, a deeper

understanding of the type of SU(3) reduction discussed in this paper will have an intrinsic

definition of the XA and GA of equation (2.12) as a starting point, and these matrices will

then follow from (3.13), as in the Calabi-Yau case.
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A. A variation on conditions iii) and iv)

Note that in the reduction, the ∗ of the 3-forms αA, βA always appears in integrals of the

form
∫

αA ∧ ∗αB ,

∫

αA ∧ ∗βB ,

∫

βA ∧ ∗βB .

Hence, allowing additional terms in the expansion of ∗αA, ∗βA that vanish upon integration

does not alter the reduction. Given our condition ∗ix), we can hence live with

∗αA = AB
AαB + BABβB + DBC

1A ∂BαC + DBC
2A ∂BβC ,

∗βA = CABαB − AA
BβB + DBC

3A ∂BαC + DBC
4A ∂BβC , (A.1)

rather than (2.5) in condition iii). If we further demand dκA = 0, rather than derive this

condition from the constancy of the matrices A,B,C as in the text, we again obtain the

expressions (3.13) for the matrices A,B,C, now by integrating the relation

∗φ̃A = i
¯̃
φA − 2iκ̄AΩ̄ ,

i.e. (3.12) with φA replaced by φ̃A, against αB and βB. We then no longer need to introduce

φA as in (2.6) of condition iv), and can instead demand that φ̃ directly be of type (2,1).

The price we pay, aside from having to impose dκA = 0 by hand, is that our system of

forms is no longer closed under ∗.
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